Marine algae can sense the rainbow

by Lindsay Jolivet Announcement Integrated Microbial Biodiversity 28.09.2015
The brown alga Ectocarpus fasciculatus, one of several diverse types of algae studied. Photo courtesy of Shannon Donovan / the University of Rhode Island
The brown alga Ectocarpus siliculosus, one of several diverse types of algae studied.
Photo courtesy of Shannon Donovan / University of Rhode Island

A new study published in Proceedings of the National Academy of Sciences has shown for the first time that several types of aquatic algae can detect orange, green and blue light, using photoreceptors that help them adapt to their environment.

Land plants have receptors to detect light on the red and far red of the spectrum, which are the common wavelengths in the air. These plants sense the light to move and grow as their environment changes, for example when another plant shades them from the sun. But in the ocean, the water absorbs red wavelengths, instead reflecting colours such as blue and green.

As part of the study, a team of researchers including Senior Fellow Alexandra Worden sequenced about 20 different marine algae and found they were capable of detecting not only red light, but also many other colours. Collaborators in the lab of J. Clark Lagarias performed the biochemical analyses that established the wavelength detection.

“It’s an amazing innovation of these algae to sense the whole rainbow,” says Worden, who leads a microbial ecology research group at Monterey Bay Aquarium Research Institute in California. She is a member of CIFAR’s Integrated Microbial Biodiversity program.

Her lab selected and grew the algae for sequencing in a collaborative effort with CIFAR Fellow Adrián Reyes-Prieto, who she first met at the Institute’s program meetings. They specifically targeted diverse but largely unstudied organisms that might reveal new evolutionary insights into photosynthetic organisms. The Gordon and Betty Moore Foundation accepted sequencing nominations from Worden and provided sequencing funds in support of understanding eukaryotic algae.

“The phytoplankton in the oceans are, of course, really important to regulating our climate, and we just never knew that they were able to sense our environment in this way,” she says.

Worden says her collaborators are interested in understanding the origins of photosynthetic life, in part because it played a crucial role in allowing other life forms, including humans, to exist. The research could also help with food production by teaching us ways to engineer crops so they will grow in many light conditions.

Leave a Comment

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Related Ideas

News | Learning in Machines & Brains

Computers recognize memorable images

Why do some images stay fixed in our memories, while others quickly fade away? Researchers have developed a deep learning...

News | Learning in Machines & Brains

Computers learn by playing with blocks

When an infant plays with wooden blocks, it’s not just playing – it’s also learning about the physical world by...

News

Neural networks advances improve machine translation

Breakthroughs in machine translation using neural networks have improved our ability to translate words and sentences between many languages. Researchers...

News | Quantum Information Science

‘Quantum repeaters’ could extend secure communication

Scientists have proposed a new method to transmit secure quantum communication across longer distances. The next generation of cryptography has...

News | Learning in Machines & Brains

Computer model generates automatic captions for images

CIFAR fellows have created a machine learning system that generates captions for images from scratch, scanning scenes and putting together...