Photo of Physicists discover a way to increase the resolution of microscopes and telescopes

Physicists discover a way to increase the resolution of microscopes and telescopes

by Patchen Barss News Quantum Information Science 20.03.2017

Physicists have found a way to increase the resolution of microscopes and telescopes beyond long-accepted limitations by tapping into previously neglected properties of light.

The method allows observers to distinguish very small or distant objects that are so close together they normally meld into a single blur.

The research appears in the journal Physical Review Letters.

Because of the laws of physics, which cause light to spread out or “diffract,” telescopes and microscopes are great for observing lone subjects. With an object like a binary star on the other hand, two stars that are close together may appear at a distance as one blurry dot, and their individual information is irrevocably lost.

beaver
University of Toronto physics researchers Edwin (Weng Kian) Tham and Hugo Ferretti prepare to run a test in their quest to beat Rayleigh’s Curse, by tapping into previously neglected properties of light. (Credit:Diana Tyszko/University of Toronto)

Part of the problem is circumventing the limitations of what is referred to as the “Rayleigh Criterion.”

More than 100 years ago, British physicist John William Strutt – better known as Lord Rayleigh – established the minimum distance between objects necessary for a telescope to pick out each individually. The “Rayleigh Criterion” has stood as an inherent limitation of the field of optics ever since.

Telescopes, though, only register light’s “intensity” or brightness. Light has other properties that now appear to allow one to circumvent the Rayleigh Criterion.

beaver
In order for two light sources to be distinguished from one another, the centre of one diffraction pattern must directly overlap with the first minimum of the other diffraction pattern. “Rayleigh’s Criterion” is the minimum distance between objects necessary for a telescope to pick out each individually.

“To beat Rayleigh’s curse, you have to do something clever,” says Aephraim Steinberg, Senior Fellow in CIFAR’s Quantum Information Science program and physicist at the University of Toronto’s Centre for Quantum Information and Quantum Control . 

“We measured another property of light called ‘phase.’ And phase gives you just as much information about sources that are very close together as it does those with large separations.”

Light travels in waves, and all waves have a phase. Phase refers to the location of a wave’s crests and troughs. Even when a pair of close-together light sources blurs into a single blob, information about their individual wave phases remains intact. You just have to know how to look for it.

This realization was published by National University of Singapore researchers Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu last year in Physical Review X. Researchers like Steinberg and his team immediately set about devising a variety of ways to put it into practice.

“We tried to come up with the simplest thing you could possibly do,” Steinberg says. “To play with the phase, you have to slow a wave down, and light is actually easy to slow down.”

 

His team, including PhD students Edwin (Weng Kian) Tham and Hugo Ferretti, split test images in half. Light from each half passed through glass of a different thickness, which slowed the waves for different amounts of time, changing their respective phases. When the beams recombined, they created distinct interference patterns that told researchers whether the original image contained one object or two – at resolutions well beyond the Rayleigh Criterion.

So far, Steinberg’s team has tested the method only in artificial situations involving highly restrictive parameters.

“I want to be cautious – these are early stages,” Steinberg says. “In our laboratory experiments, we knew we just had one spot or two, and we could assume they had the same intensity. That’s not necessarily the case in the real world. But people are already taking these ideas and looking at what happens when you relax those assumptions.”

The advance has potential applications both in observing the cosmos, and also in microscopy, where the method can be used to study bonded molecules and other tiny, tight-packed structures.

Regardless of how much phase measurements ultimately improve imaging resolution, Steinberg says the experiment’s true value is in shaking up physicists’ concept of “where information actually is.”

Steinberg’s “day job” is in quantum physics – this experiment was a departure for him. He says work in the quantum realm provided key philosophical insights about information itself that helped him beat “Rayleigh’s curse.”

“When we measure quantum states, you have something called the Uncertainty Principle, which says you can look at position or velocity, but not both,” he says. “You have to choose what you measure. Now we’re learning that imaging is more like quantum mechanics than we realized. When you only measure intensity, you’ve made a choice, and you’ve thrown out information. What you learn depends on where you look.”

Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and Northrop-Grumman Aerospace Systems NG Next.

Leave a Comment

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Related Ideas

Announcement | News

CIFAR Research Workshops: Call for Proposals

For more than three decades, CIFAR’s global research programs have connected many of the world’s best minds – across borders...

News | Institutions, Organizations & Growth

Review: Daron Acemoglu on Robotics, AI and the Future of Work

As society looks to the future and the potential of AI and robotics, CIFAR Senior Fellow and MIT economist Daron...

Feature | News | Azrieli Program in Brain, Mind & Consciousness | CIFAR Azrieli Global Scholars

EEG in the Wild

What if we could track our brain activity the same way a smart watch tracks our heart rate? But instead...

Reach Magazine | Quantum Information Science

Quantum Insecurity

The ability to send gigabytes of data around the planet in the blink of an eye has transformed our world....

Quantum Information Science

How to breed Schrödinger’s cats

Alexander Lvovsky is a physicist, a CIFAR Quantum Information Science Fellow and most recently, a Schrödinger’s cat breeder. In 1935,...

Announcement | Quantum Information Science

Raymond Laflamme awarded CAP-CRM Prize

CIFAR Senior Fellow Raymond Laflamme was awarded the 2017 CAP-CRM Prize in Theoretical and Mathematical Physics for his ground-breaking work...