Search

Jennifer Zenker

Jennifer Zenker-BW

Appointment

  • CIFAR Azrieli Global Scholar 2019-2021
  • Molecular Architecture of Life

Institution

  • Monash University
Australian Regenerative Medicine Institute (ARMI)

Country

  • Australia

Education

PhD (Neurobiology), University of Lausanne, Switzerland
Diploma (Biology), University of Stuttgart-Hohenheim, Germany

About

Jennifer Zenker uses innovative microscope technology to study how embryos grow and develop. 

During embryonic development, cells are constantly in action. They divide, grow, migrate and eventually adopt more specialized functions and structures to form different organs. The cytoskeleton provides a structural and functional scaffold inside all cells and is intricately linked to cell type-specific behaviours in health and disease. In particular, the filaments of the microtubule network dynamically alter their organization in response to the needs of a cell. Zenker’s research applies cutting edge microscopy techniques to watch these structural changes as they occur within single cells of the developing organism. 

Uncovering the dynamics of cellular architecture during early tissue formation using live imaging will allow Zenker to better gauge the potential uses of stem cells for various clinical applications and shed new light on their fundamental biological differences. Her research may open the door to new ways for regulating microtubule organization and cell behaviour non-invasively.

Awards

2015 Human Frontier Science Program (HFSP), Postdoctoral Fellowship

2013 Deutsche Forschungsgemeinschaft (DFG), Postdoctoral Fellowship

2013 Amicitia Excellence Prize, PhD Thesis Award

2012 Swiss National Science Foundation (SNF), Postdoctoral Fellowship

Relevant Publications

Zenker, J. et al. “Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.” Cell, 2018.

White, M.D., Zenker, J., Bissiere, S., Plachta, N. “Instructions for assembling the early mammalian embryo.” Developmental Cell, 2018.

Zenker, J. et al. “An interphase microtubule organizing center establishing intracellular transport in the early mouse embryo.” Science, 2017.

Zhao ZW*, White MD*, Zenker J*, Alvarez Y, Bissiere S, Plachta N. “Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy.”  Nature Protocols, 2017.

Zenker, J et al. “Altered distribution of juxtaparanodal Kv1-channels mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus.” Journal of Neuroscience, 2012.

Connect

Website