Go Back

Photo of John Y. T. Wei

John Y. T. Wei

John Wei’s research is devoted to nanoscale studies of unconventional superconducting and magnetic materials. His research examines the electronic properties of these materials at very short length scales, where the quantum ordering effects occur coherently without being averaged out over macroscopic distances, and manifest themselves as novel phenomena.  It involves a unique combination of cryomagnetic, nanoprobe and nanofabrication techniques, with the application of both “top-down” and “bottom-up” approaches.  Detailed understanding of these unconventional materials is of fundamental importance to condensed matter physics, and could also lend them to novel technological applications, ranging from superconducting to spintronic devices, as well as elements for quantum computation.  He has been interested in the unconventional superconductivity and magnetism which occur in several families of novel electronic materials.  These include the high-Tc copper oxides, the heavy-fermion intermetallic compounds and the he half-metallic transition-metal oxides.

Relevant Publications

H. Zhang et al, "Attenuation of superconductivity in manganite/cuprate thin-film heterostructures by epitaxially induced CuO intergrowths," Applied Physics Letters vol. 103, pp. 052606, 2013.



Associate Fellow Quantum Materials


University of TorontoDepartment of Physics


B.A. (Physics) University of California at Berkeley



No Assets Found

Sorry, we did not find any assets matching these filters.